In machine learning, the question "How good is the model?" is fundamental. To answer this, it's essential to understand how data is structured and evaluated. To explain the importance of training, validation, and testing, let's dive into an analogy rooted in school days. Training Data: Building a Strong Foundation Imagine you're in your favorite class, absorbing new material. This is where the core learning happens. In the context of machine learning, the training data is the classroom lesson. It's the information the algorithm needs to understand the problem it's tasked with solving. For example, if you're studying history, your textbooks, lectures, and homework represent the training data. Similarly, a machine learning model relies on training data to learn patterns, relationships, and features in the dataset. It processes this information to prepare for solving problems, much like a student studies to perform well on tests. The training phase is cr...
Decoding Leadership, Powering Innovation