Skip to main content

About

Lead and Code is where leadership meets technology. Through this blog, I share insights from my journey in data, AI, and machine learning—from building an Olympic ID card system to leading federal data initiatives at the OMB/White House.

I started as a developer, fascinated by the balance between data and user experience. That curiosity led me deep into business intelligence, data modeling, and visualization, transforming raw data into powerful insights. But my greatest challenge wasn’t technical—it was leadership.

Moving from an individual contributor to leading teams, I learned that expertise alone isn’t enough. True leadership is about influence, trust, and adaptability—navigating pressures, uniting people, and driving change.

This blog is a front-row seat to that journey. Join me as I explore the art of leadership in tech, share lessons learned, and uncover strategies to thrive in this evolving landscape.



Comments

Popular posts from this blog

Unlocking the Power of Data: Embracing Machine Learning for Business Success - Part 2

Machine learning has revolutionized the way we solve complex problems, make predictions, and gain insights from data. One of the key decisions when choosing a machine learning algorithm is whether to opt for a parametric model or a non-parametric model. These two categories of models represent distinct approaches to handling data and have their own strengths and weaknesses. In this blog post, we will delve into the world of parametric and non-parametric machine learning models, exploring what sets them apart and when to use each type. Parametric Models: Structure and Assumptions Parametric machine learning models are characterized by their predefined structure and assumptions about the underlying relationship between input and output variables. These models assume that the relationship can be expressed using a fixed, predefined formula or functional form. The key features of parametric models are as follows: 1. Fixed Number of Parameters: Parametric models have a fixed number of parame...

Why Emotional Intelligence Matters More Than You Think

In everyday life, people often think of emotions as things that pop up in dramatic or personal moments—like falling in love or having a fight. But emotions are actually involved in nearly everything we do. From making decisions to understanding others, emotions play a central role in our lives. And to navigate this emotional landscape successfully, we need a special skill called Emotional Intelligence (EI) . Emotions Are Everywhere Emotions don’t just come into play during big life moments. They influence what we choose to eat, how we respond to co-workers, and whether we go to the gym or stay in bed. For example, if a child touches a hot stove and feels pain, they learn through that emotional experience to avoid doing it again. That emotional memory becomes a protective tool. Similarly, we interpret other people's emotions to help us understand what might happen next. If someone is shouting and has clenched fists, we instinctively know to be cautious—they may be ready to lash out...

Data Science - Managers Guide Part 2

Introduction Previously we discussed the meaning and methods of data science and machine learning. There are numerous tutorials on using machine language but it is always confusing in figuring out where to start when given a problem. Over the course of my career, I have developed a nine-step framework – ML Framework - with a set of questions that helps me get started towards laying the foundation. It is to be used only as a guide because planning every detail of the data science process upfront isn’t always possible and more often than not you’ll iterate multiple times between the different steps of the process. ML Framework Describe the problem  Chart a solution  Look for the necessary data  Check if the data is usable  Explore and understand the data  Decide on keep or delete features  Select a machine learning algorithm  Interpret the results  Plan for scaling  Describe the problem What are we trying to solve? The main purpose here is m...